Health Concerns of Chronic Ingestion of Uranium in Drinking Water

Chris Shuey, MPH
Southwest Research and Information Center
Albuquerque, NM
sric.chris@earthlink.net

For Tó Łani Enterprises Puerco-LCR Water Quality Project

July 24, 2015
Nahata Dziil Commission Governance
Park Estates Subdivision, Sanders, AZ
Uranium in Drinking Water (µg/l)
Arizona Windsong Water Co., Sanders, AZ

Drinking water standard: 30 µg/l (USEPA, Navajo EPA)

DiNEH water quality statistics compared with USEPA data

(Concentrations in mg/l; Radium and Gross Alpha in pCi/l)

DiNEH* (2003-2010)

<table>
<thead>
<tr>
<th></th>
<th>MCL</th>
<th>N</th>
<th>Range</th>
<th>Mean ± SE</th>
<th>Med.</th>
</tr>
</thead>
<tbody>
<tr>
<td>As</td>
<td>0.01</td>
<td>158</td>
<td>0-0.482</td>
<td>0.007±0.0399</td>
<td>0.00094</td>
</tr>
<tr>
<td>U</td>
<td>0.03</td>
<td>135</td>
<td>0-0.26</td>
<td>0.009±0.0286</td>
<td>0.00027</td>
</tr>
<tr>
<td>Se</td>
<td>0.05</td>
<td>157</td>
<td>0-1.0</td>
<td>0.014±0.082</td>
<td>0.0011</td>
</tr>
<tr>
<td>F</td>
<td>4.0</td>
<td>192</td>
<td>0-8.3</td>
<td>1.15±1.177</td>
<td>0.705</td>
</tr>
<tr>
<td>Ra</td>
<td>5.0</td>
<td>84</td>
<td>0-10.9</td>
<td>1.87±2.10</td>
<td>1.28</td>
</tr>
<tr>
<td>NO₂</td>
<td>1.0</td>
<td>118</td>
<td>0-7.5</td>
<td>0.131±0.694</td>
<td>0</td>
</tr>
<tr>
<td>NO₃</td>
<td>10.0</td>
<td>199</td>
<td>0-29.0</td>
<td>1.583±3.54</td>
<td>0.3</td>
</tr>
<tr>
<td>GA</td>
<td>15</td>
<td>26</td>
<td>0.3-21.7</td>
<td>5.15±5.012</td>
<td>3.99</td>
</tr>
<tr>
<td>Pb</td>
<td>.015</td>
<td>154</td>
<td>0-0.021</td>
<td>.0012±0.0028</td>
<td>0</td>
</tr>
</tbody>
</table>

*All water sources in 20 chapters of Eastern Agency
GA = Gross alpha radioactivity

<table>
<thead>
<tr>
<th></th>
<th>MCL</th>
<th>N</th>
<th>Range</th>
<th>Mean ± SE</th>
<th>Med.</th>
</tr>
</thead>
<tbody>
<tr>
<td>As</td>
<td>0.01</td>
<td>222</td>
<td>0-0.282</td>
<td>0.009±0.028</td>
<td>0.0028</td>
</tr>
<tr>
<td>U</td>
<td>0.03</td>
<td>222</td>
<td>0-0.286</td>
<td>0.0198±0.039</td>
<td>0.0076</td>
</tr>
<tr>
<td>Se</td>
<td>0.05</td>
<td>222</td>
<td>0-0.957</td>
<td>0.0094±0.07</td>
<td>0</td>
</tr>
<tr>
<td>Ra</td>
<td>5.0</td>
<td>222</td>
<td>0-8.2</td>
<td>0.56±1.7</td>
<td>0.6</td>
</tr>
<tr>
<td>GA</td>
<td>15.0</td>
<td>222</td>
<td>0-155</td>
<td>11.5±21.98</td>
<td>4.4</td>
</tr>
<tr>
<td>Pb</td>
<td>0.015</td>
<td>222</td>
<td>0.0.1</td>
<td>0.0029±0.012</td>
<td>0</td>
</tr>
<tr>
<td>AI**</td>
<td>0.05-2.0</td>
<td>222</td>
<td>0.61.9</td>
<td>0.84±4.8</td>
<td>0.08</td>
</tr>
</tbody>
</table>

*All water sources located in the western half of the Navajo Nation in Arizona and Utah
**Aluminum has no MCL; the reference range given is the secondary drinking water standard
GA = Gross alpha radioactivity
The Basics of Uranium

(Łeetso, or “yellow dirt”, may not be accurate)

- Discovered in Russia in 1789
- A heavy metal — the heaviest natural element (No. 92)
- Abundance about 0.5-5 ppm (0.00005%-0.0005%) in the continental crust (1000x more abundant than gold)
 - Carnotite, most common uranium mineral
 - Yellow flecks or streaks in gray-black matrix

- A mixture of three different weights of atoms, called isotopes:
 - U-238 (99.3%), U-235 (0.7%), U-234 (<0.05%)

- U is radioactive (its atoms spontaneously decay, releasing energy as a new element is formed)

- Primary uses:
 - 1940s-1960s: fissile material for nuclear weapons
 - 1960s – present: fuel for nuclear power
 - 1980s – present: metal casings for field ordnance
What are the elements that result from the decay of uranium, and what types of radiation do they emit?

The Uranium-238 Decay Chain

Atomic Number

<table>
<thead>
<tr>
<th>82</th>
<th>83</th>
<th>84</th>
<th>85</th>
<th>86</th>
<th>87</th>
<th>88</th>
<th>89</th>
<th>90</th>
<th>91</th>
<th>92</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb-214 26.8 m</td>
<td>Po-218 3.05 m</td>
<td>Rn-222 3.82 d</td>
<td>Ra-226 1600 a</td>
<td>Th-230 7.7x10^4 a</td>
<td>U-234 2.4x10^5 a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Only main decays are shown. Gamma emitters are not indicated.

Element Names:
- U - uranium
- Th - thorium
- Ra - radium
- Po - polonium
- Bi - bismuth
- Pb - lead

Half-life units:
- a - years
- d - days
- h - hours
- m - minutes
- s - seconds

Red circle indicates radionuclides often found in elevated levels in uranium mine and mill wastes.
Radiation: Energy that travels through space in the form of particles or waves

- Non-ionizing radiation
 - Light, heat, microwaves and radio waves

- Ionizing radiation (Greek symbol): energy sufficient to remove an electron from an atom or molecule
 - alpha (α) particles
 - beta (β) particles
 - neutrons
 - gamma (γ) rays (photons)
How Does Uranium Get In You?

- **Inhalation** — breathing uranium in air
 - in mines and mills, hauling ore (workers)
 - living around mine waste dumps
 - dust and erosion from rocks

- **Ingestion** — eating and drinking substances that contain uranium
 - drinking water: most important pathway (about 80%)
 - eating animals, plants
Why is Uranium Harmful?

- **Chemical toxicant:** causes kidney damage, disease (proximal tubules)
- **Radiotoxicity:** causes lung and bone cancers from radioactive decay products
- Dozens of scientific, medical studies over last 125 years
- Studies of human populations exposed to *low levels* of uranium in drinking water
Sites of Uranium Toxicity to the Kidney*: Proximal Tubules

*Kidney toxicity based on animal, human studies of uranium ingestion through water; LOAEL = ~14.5 ug/l-water.
Exposure continuum

\[\text{Chronic} \quad \leftrightarrow \quad \text{Acute} \quad (\text{long-term, over time}) \quad (\text{immediate effects})\]

- Generally, lower dose \(\rightarrow\) less risk
- However,
 - Low concentration over longer exposure time \(\rightarrow\) higher cumulative dose, greater risk

Most of the environmental exposures we see in human uranium studies are in the chronic, low-dose region
Community Exposures to Uranium

About half of all Navajo Chapters have 1 or more uranium exposure sources

Map by T. Rock, DiNEH Project

Navajo Nation Uranium Exposure Sources:
Uranium Mine Features, Contaminated Structures
Uranium Contaminated Wells
(Non-Navajo Lands data not included)

No uranium exposures in Lupton area?
Waste water discharges from uranium mining and milling operations in Puerco River headwaters contributed to basin-wide contamination from 1960s into 1990s.
Puerco River Contaminant Source:
Church Rock Uranium Mill Tailings Spill,* July 16, 1979
*Largest release of radioactive wastes, by volume, in US history

United Nuclear Corp. Uranium Mill Tailings Dam, July 16, 1979

Dam breach location, July 17, 1979

Livestock tracks in Puerco River downstream of spill, July 17, 1979

Community leaders Larry J. King (L) and Robinson Kelly addressed long-term impacts of spill in 2009.

Photos courtesy of Southwest Research and Information Center, New Mexico Environmental Improvement Division, Albuquerque Journal.
Northeast Church Rock Mine and Red Water Pond Road Community, 1972-2009

1st removal action, 2007

2nd removal action, 2009

3rd removal action, 2012

CRUMP radiation monitoring, 2002
Father Sky-Mother Earth Interaction:
When removed from *Nik’ashbááh*, uranium is oxidized and moves rapidly in water.

U^{+4} — in most undisturbed rocks and groundwater, insoluble

U^{+6} — when brought to the surface and exposed to oxygen in the air, highly soluble

Solubility
Does it dissolve slowly or quickly?

Transport:
Where does it go?

Modified from slide by J. deLemos, 2007
Historic Contaminant Discharges to Puerco River
(from Shuey, 1992)

- 20+ years of discharge of uranium mine water
 - 450 gpm in 1963 to 5,200 gpm in 1982
 - Wirt (USGS, 1994): “effects of uranium mining can no longer be identified in water and sediment samples from the Puerco or Little Colorado rivers”

- 1979 Church Rock Uranium Mill Tailings spill
 - 94 million gallons; pH = 1.5; one-time “shock loading”

- Gallup Wastewater Treatment Plant (1958-present)
 - 6.1 million gallon release of raw sewage in 1988
 - 2.4 million gallons treated effluent per day since 1989

- Natural runoff
 - Wirt: “high sediment concentrations cause streamflow to exceed Federal standards for radioactive…and nonradioactive elements”
So where did the uranium go?

Our results suggest that the low sediment uranium concentrations likely resulted from the dissolution and flushing of uranium during precipitation events. Surficial, weathered sediments are depleted of more soluble uranyl phases relative to deeper (>~20 cm) sediments.

1st Law of Thermodynamics, “Conservation of Energy,” suggests that uranium and other contaminants are concentrated somewhere in the Puerco-LCR system.
What are Options for Bringing Clean Water To Park Estates Subdivision?

- Haul in water from clean sources
 - National Guard?
 - NNDWR water trucks
- Buy bottled water
- Ask NTUA to connect its system
- Drill new well