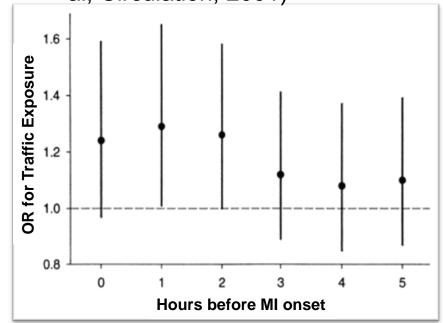
## Metal Components in Ambient Airborne Particulate Matter as Drivers of Cardiovascular Morbidity and Mortality

Металлические частицы в атмосферном воздухе как причины сердечно-сосудистой заболеваемости и смертности


Matthew J Campen, PhD
College of Pharmacy
University of New Mexico

# Air Pollution and Cardiovascular Health Загрязнение воздуха и сердечно-сосудистые заболевания

\* Air pollution may drive growth / development of atherosclerosis Загрязнение воздуха может вызвать атеросклероз ... (Kunzli, Environ Health Perspect. 2005)...

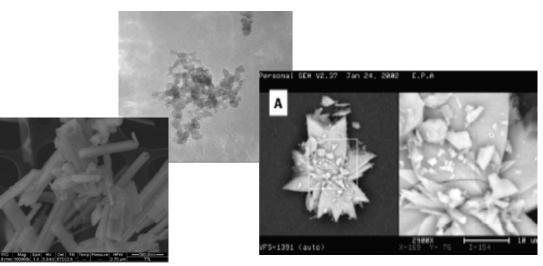

...and plaque rupture and myocardial infarction ... и разрыв артериальной бляшки и инфаркт миокарда (Peters et al, Circulation, 2001)

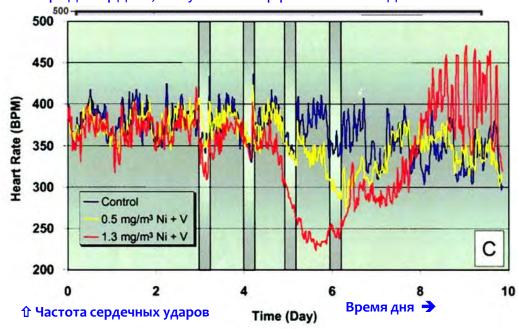
Figure 2. Mean CIMT  $\pm$  1 SE among quartiles of the PM<sub>25</sub> distribution. The *y*-axis shows mean CIMT levels at the population average of the adjustment covariates (age, sex, education, and income). The first quartile is the reference group.

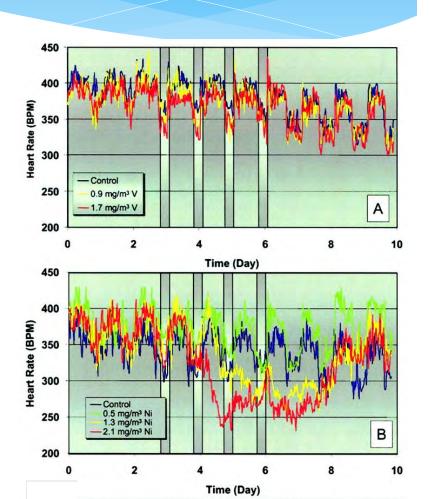


# Particulate Matter Твердые частицы в воздухе

- \* "Dust" ranges in size greatly; respirable particles are generally less than 10 microns "Пыль» может значительно различаться по размеру; вдыхаемые частицы, как правило, меньше 10 микрон
- \* Size, shape, density and COMPOSITION determine the deposition and toxicity of PM Размер, форма, плотность и состав определяют отложение и токсичность твердых частиц







# Residual Oil Fly Ash Effects Largely Driven by Transition Metals Воздействие летучей золы с нефтяными частицами большей частью осуществляется переходными металлами

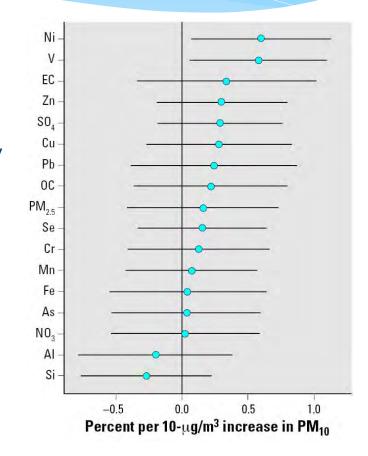
Rats inhaled various concentrations of individual metals 6 h per day x 4 days Крысы вдыхали различные концентрации отдельных металлов 6 ч в день x 4 дня

 (ROFA inhalation induced immediate and delayed bradycardia Вдыхание летучей золы вызвало немедленную и замедленную брадикардию

\* Inhaled Nickel mimicked the delayed bradycardia; no effect of Vanadium Вдыхание никеля вызвало замедленную брадикардию; отсутствие эффекта от ванадия






# Interactive Extrapulmonary Effects of Inhaled Ni and V in Rodents Интерактивные легочные эффекты ингаляционных/вдыхаемых Ni и V в организме грызунов

- \* Rats (n = 4 per group) inhaled various concentrations of individual metals 6 h per day x 4 days Крысы вдыхали различные концентрации отдельных металлов 6 ч в день x 4 дня (Campen, 2001)
- \* Nickel independently caused pulmonary and systemic effects Никель независимо вызвал легочные и системные воздействия
- \* Vanadium potentiated Ni toxicity, especially in terms of arrhythmogenesis
- \* Ванадий потенцировал/усилил действие токсичности Ni, особенно в аритмии



# PM Compositional Studies in Larger Populations <u>Изучение составов твердых частиц в больших популяциях</u>

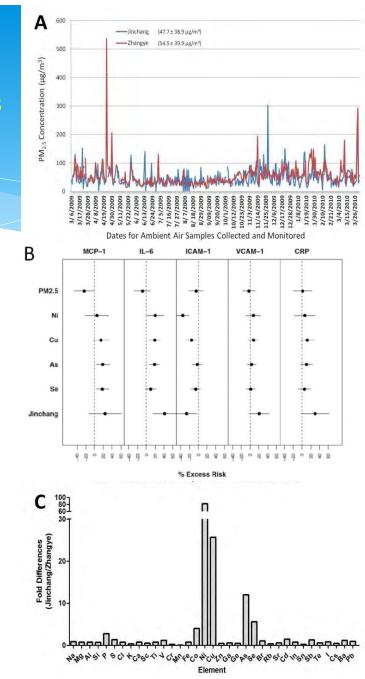
- \* Lippman et al (EHP, 2006) examined PM components relative to mortality in 2 population studies
- \* Липпман и др (2006) исследовали твердые частицы относительно смертности в 2 популяционных/демографических исследованиях
  - National Mortality and Morbidity Air Pollution Study
  - \* 1) Национальное исследование смертности и заболеваемости и загрязнение воздуха
  - \* Hong Kong 2) Исследование в Гонконге
- \* Nickel and Vanadium trended significantly with cardiovascular morbidity in both cohorts
- \* Никель и ванадий существенно были связаны с сердечно-сосудистой заболеваемостью в обеих группах



## PM Compositional Studies in Larger Populations <u>Изучение составов твердых частиц в больших популяциях</u>

- \* Michelle Bell (HEI Reports, #161, 2012) examined the % change in the PM total mass health effect estimates per IQR increase in the component fraction of PM2.5 total mass
- \* Мишель Белл (2012) исследовала процентное изменение в общей массе твердых частиц и его сравнивала с последствиями для здоровья при увеличении компонента фракции 2,5 общей массы
- \* 20 Compositional metrics 20 Композиционных метрик
- \* 6 years of health and PM data from 187 US counties
- \* 6 лет данных о здоровье и твердых частицах в 187 районах США
- Related to Cardiovascular Hospitalization
- \* Связано с сердечно-сосудистыми проблемами и госпитализацией
- \* Nickel and Vanadium emerged as likely drivers
- Никель и ванадий считались вероятными причинами воздействия

|                   | Hospitalization $n = 106$ |
|-------------------|---------------------------|
| Al                | -5.4 (-14.9 to 4.1)       |
| NH <sub>4</sub> + | -1.9 (-43 to 39)          |
| As                | -9.4 (-38 to 19)          |
| Ca                | -11 (-34 to 12)           |
| Cl                | 13 (-1.1 to 26)           |
| Cu                | 4.4 (-20 to 29)           |
| EC                | 26 (4.4 to 47)            |
| Fe                | -7.2 (-27 to 12)          |
| Pb                | 2.6 (-20 to 25)           |
| Mg                | -18 (-41 to 4.3)          |
| Ni                | 19 (9.9 to 28)            |
| NO <sub>3</sub> - | 16 (-11 to 42)            |
| OCM               | -5.6 (-38 to 27)          |
| K                 | -13 (-35 to 8.0)          |
| Si                | -11 (-26 to (4.5)         |
| Na+               | 8.2 (-12 to 28)           |
| SO <sub>4</sub> = | -15 (-38 to 8.9)          |
| Ti                | -22 (-44 to 0.3)          |
| V                 | 28 (11 to 44)             |
| Zn                | 7.9 (-8.0 to 24)          |


PM2 5 and Cardiovascular

Uoenitalization

## Influence of Metal Components on Circulating Biomarkers

Влияние металлических компонентов на сердечно-сосудистые биомаркеры

- \* Two cities (Jinchang & Zhangye) with comparable populations and overall PM levels Исследование двух китайских городов (Цзиньчан & Чжанъе)— сопоставимые группы населения и общий уровень твердых частиц
- \* Jinchang had substantial elevations in metal composition В Цзиньчане имелись значительные повышения в структуре металлов
- \* Cohort from Jinchang had lower endothelial progenitor cells and higher circulating CRP and VEGF В группе из Цзиньчана были обнаружены более низкие клетки эндотелияпредшественников и высокий уровень Среактивного белка и роста эндотелия сосудов



#### Cardiovascular Mortality Outcomes Associated with Other PM Metals

### Сердечно-сосудистая смертность, и связи с угими металлами в твердых частицах

#### Ostro et al., Occ Environ Med, 2008 6 California Counties В 6 районах в California

Table 3 Summary of statistically significant positive associations between cardiovascular mortality, by effect modifier and single-lag days for pollutants:

| Pollutant           | AII | Gender     |                | Race       |            | Education               |                             |
|---------------------|-----|------------|----------------|------------|------------|-------------------------|-----------------------------|
|                     |     | Male       | Female         | White      | Hispanic   | High school<br>graduate | Non-high school<br>graduate |
| PM2.5               | 3†  | _          | 2†, 3†         | 3*         | 1†, 3†     | _                       | 0†, 3†                      |
| Elemental<br>carbon | 2†  | 2*         | 3*             | 2†         | -          | 2*                      | <b>3</b> †                  |
| Organic<br>carbon   | -   | -          | <b>3</b> †     | 2†         | -          | -                       | <b>3</b> †                  |
| Nitrates            | 3*  | _          | 3*             | _          | 1†, 3†     | _                       | <b>0</b> †, 3*              |
| Sulphates           | 3†  | 0*         | _              | 3*         | 1†         | _                       | 0†, 2†                      |
| Calcium             | _   | -          | 2*             | _          | -          | _                       | _                           |
| Chlorine            | _   | -          | _              | _          | <b>2</b> † | _                       | _                           |
| Copper              | _   | -          | _              | _          | 1†, 3*     | _                       | 1†                          |
| Iron                | 2†  | -          | 2†, <b>3</b> * | <b>2</b> † | _          | 2*                      | <b>3</b> †                  |
| Potassium           | 2*  | -          | 2†             | <b>2</b> † | 1†         | _                       | 1†, 2*                      |
| Sulphur             | 3*  | <b>0</b> † | 2†             | 0*         | 3*         | _                       | 0†, 2†                      |
| Silicon             | _   | -          | _              | _          | _          | _                       | <b>3</b> †                  |
| Titanium            | 2*  | -          | 2*             | 2†         | <b>1</b> † | -                       | <b>1</b> †                  |
| Zinc                | 3†  | 0†, 2†     | 3†             | 3†         | _          | _                       | 3†                          |

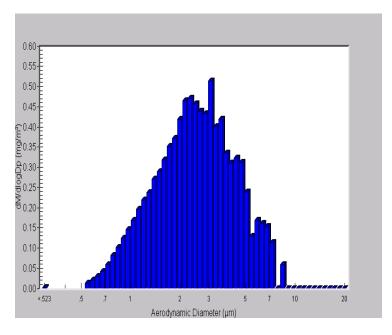
PM, particulate matter.

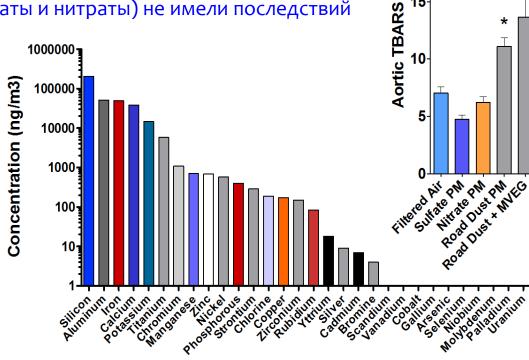
Vedal, Campen et al., Health Effects Institute Reports, 2013 MFSA Cohort

| _                    | CIMT                    | <u>CAC</u> |  |
|----------------------|-------------------------|------------|--|
| Ni                   | +                       | +          |  |
| V                    | 0                       | O          |  |
| Cu                   | ++                      | +          |  |
| NOx                  | 0                       | 0/+        |  |
| SO <sub>2</sub>      | +/++                    | 0          |  |
| NO2                  | 0                       | 0          |  |
| Толщина<br>сонной ар | Кальций в<br>коронарной |            |  |

артерии

<sup>\*</sup>p<0.10 and †p<0.05 for difference from null effect.


<sup>‡</sup>Numbers in the table indicate which lags (of 0 to 3 days) were statistically significant. Bold indicates that the lag also produced a significantly greater effect estimate (p < 0.10) in this group versus the corresponding demographic subgroup.

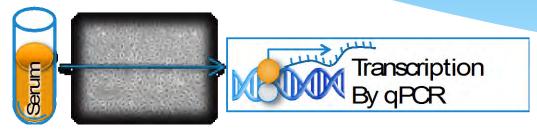

The regression model includes time (4 df/year), 1-day lags of temperature and humidity, day of week and pollutant.

# Chronic Road Dust Studies Related to Near-Roadway Pollution Исследования хронической дорожной пыли, связанной с загрязнением рядом с дорогами

\* Metal-containing road dust inhalation (6 h/d x 50d) drove vascular oxidative stress in ApoE-/- mice Вдыхание дорожной пыли, содержащей металлов (6 ч/д, 50д) вызвало сосудисто-окислительный стресс у мышей

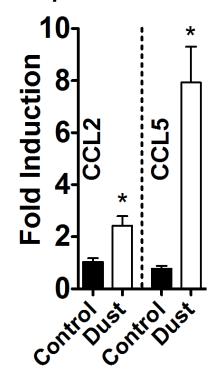
Secondary PM (sulfate and nitrate) did not have effects
Вторичные твердые частицы (сульфаты и нитраты) не имели последствий





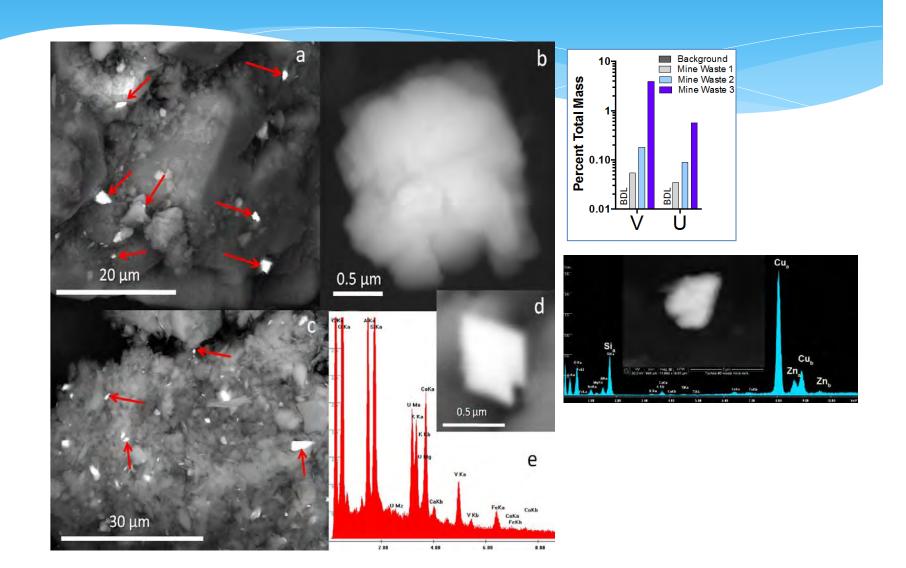

Vedal, Campen et al., Health Effects Institute Reports, 2013

#### Generation of Serum Bioactivity By Inhalation Exposures


#### Повышение биологической активности в сыворотке крови,

#### вызванное вдыханием




- \* Serum from ApoE<sup>-/-</sup> mice exposed to Filtered Air or Road Dust for 6 h/d x 50 days
- \* Сыворотка от мышей, подвергнутых воздействию фильтрованного воздуха или дорожной пыли в течение 6 ч/д, 50 дней
- \* Cultured primary mouse cerebrovascular endothelial cells were incubated with 5% mixture of serum in media for 4h
- \* Церебро-васкулярные эндотелиальные клетки главной мыши инкубировали с 5% -ным раствором сыворотки в течение 4 часов
- \* Chemokine mRNA responses (CCL2/MCP1; CCL5/RANTES) in treated endothelial cells indicate presence of pro-inflammatory factor(s) Хемокин РНК ответы (CCL2 / MCP1; CCL5 / RANTES) в обработанных клетках эндотелия указывают на наличие воспалительных факторов

## **Endothelial Cell Response to Serum**



### Concerns Related to Regional Abandoned Uranium Mines

Проблемы, связанные с заброшенными урановыми рудниками



### Key Information Gaps Related to the Health Impacts of PM Metals Основные информационные пробелы, относящиеся к здоровью и к воздействиям металлов в твердых частицах

- Most research has been on soluble metals principally related to burning of residual oil in the power and shipping industries Большинство исследований было по растворимым металлам - в основном, связанных с сжиганием мазута при электроснабжении и грузтранспорта
  - Paucity of information of more stable, insoluble metals delivered via inhalation
  - \* Недостаточность информации о более стабильных, нерастворимых металлах, проникших в организм в процессе дыхания
- Most research has focused on acute outcomes
- \* Большинство исследований было сосредоточено на острых последствиях
  - Most important public health impacts will be related to chronic vascular and metabolic diseases
  - \* Наиболее важные последствия здравоохранения будут связаны с хроническими сосудистыми и метаболическими болезнями
- \* How does toxic effect transfer systemically? Как токсическое воздействие происходит системно?
- \* Mixtures! Соединения металлов!

## **Acknowledgements**

### Благодарность

#### **UNM**

- \* Molly Harmon
- \* Adrian Brearley
- \* Johnnye Lewis
- Jose Cerrato
- \* Abdulmehdi Ali
- \* Selita Lucas
- \* Luis Roldan

#### **SRIC**

- Chris Shuey
- Paul Robinson

#### **US EPA**

- \* Penn Watkinson, PhD
- \* Dan Costa, DSc
- \* Michael Madden, PhD
- \* Bob Devlin, PhD



#### **Lovelace**

- \* Jake McDonald, PhD
- **NIOSH**
- \* Aaron Erdely, PhD
- **U North Texas**
- \* Amie Lund, PhD

#### Funding:

- \* **EPA** R83399001
- \* NIH ES014369
- \* **NIH** OH010495



