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Goal 

Assess whether kidney disease, diabetes, and hypertension are 
associated with uranium mining activities on the Navajo Nation. 
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Background 
Rates of chronic disease are elevated among the Navajo though the 
chronic health impacts of exposure to unremediated sites is unknown. 
The DiNEH team conducted a cross-sectional survey (n = 1, 304) to learn 
about health, sources of uranium waste exposures, and water- and land-
use practices. 
This paper presents results attempting to quantify the health impacts of 
uranium exposure on chronic disease among the Navajo. 

Abandoned mines, 
milling sites, and 
waste piles remain 
in more than 50% 
of the chapters. 
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Exposure 

Two distinct periods of exposure are prevalent on the Navajo Nation: 
 
 

historic active exposure from 
the mining period and 

 
current legacy exposure 
ongoing in relation to the 
unremediated waste sites. 

 

Exposures during the active mining period were likely at higher 
concentrations and likely occurred through different exposure 
pathways than ongoing legacy waste exposure. 
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Female 
 

% n 

Male Tota
l 

% n % n 
Disease outcomes 
Ever had kidney disease 

 
4.9 

 
36 

 
5.5 

 
31 

 
5.1 

 
67 

Ever had diabetes 27.3 201 22.2 126 25.1 327 
Ever had high blood pressure 35.5 261 36.4 207 35.9 468 

Active Exposure 
Worked in uranium mine 

 
2.4 

 
18 

 
19.4 

 
110 

 
9.8 

 
128 

Worked in uranium mill 0.4 3 3.7 21 1.8 24 
Worked on reclamation or hauled ore 0.3 2 4.6 26 2.1 28 
Washed or handled clothes 21.9 161 20.1 114 21.1 275 
Lived in mining camp 3.1 23 4.4 25 3.7 48 
Any active exposure 22.8 168 28.4 161 25.2 329 

Legacy Exposure 
Used materials from abandoned site 

 
14.4 

 
106 

 
16.7 

 
95 

 
15.4 

 
201 

Sheltered livestock in abandoned mine 1.2 9 2.6 15 1.8 24 
Herded livestock near contaminated site 12.6 93 12.7 72 12.7 165 
Contacted contaminated water 11.7 86 14.3 81 12.8 167 
Played near contaminated site 10.3 76 14.1 80 12.0 156 
Played on uranium tailings pile or dump 11.0 81 14.6 83 12.6 164 
Any legacy exposure 25.7 189 33.1 188 28.9 377 



Modeling framework 
Goal: Examine data associations between chronic disease outcomes (kidney 
disease, diabetes, and hypertension) and mining exposures within an 
epidemiological causal inference framework. 

Logistic regression is the standard model for binary outcomes. 

Important modeling considerations include: 

1 

3 

4 

Bayesian versus frequentist model. 

Multivariate (model all diseases together) versus univariate (model each 
disease separately) outcome model. 

Appropriate effect measures for communicating risk. 

Method for confounding adjustment - propensity score methods 
(weighting, adjustment, or matching) versus regression adjustment. 

Sensitivity analysis for unmeasured confounding. 

2 

5 
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Bayesian modeling framework 

We model the multivariate vector of disease outcomes (kidney 
disease, diabetes, and hypertension) using a Bayesian multivariate 
t-link model (O’brien and Dunson 2004) to quantify disease-exposure 
associations, controlling for confounding variables. 

Rationale for multivariate Bayesian model choice: 

The study team hypothesizes a common mechanism underlying these 
diseases that is related to environmental exposures. 

Similar to a copula model, resulting in marginal logistic regression 
models and log-odds ratio parameter interpretations. 
With approximation, posterior sampling is simple and efficient. 

Avoid large-sample frequentist assumptions. 
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Multivariate t-link model 
Basic idea: Model the vector of binary disease outcomes using a latent 
multivariate-t random variable. 

With appropriate choice of the t-parameters, regression coefficients have 
approximate log-odds ratio interpretations. 

Model for the linear predictor: 

νj i  = Ei βE  + Xi β j j    j 

..,   Ei  is binary exposure (active or legacy, depending on the model). 
K D H .., X   = [X   , X   , X   ] is a vector of confounders for j ∈ {K, D, H}. i i i  i 

Using this approximation, computation of full conditionals is based on 
simple Gibbs and Metropolis Hastings steps. 

Specify informative g-priors on the regression coefficients (Hanson et. al 
2014) and informative normal priors on the correlation parameters of R. 
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Effect estimates 

1 Disease-specific conditional odds ratio for exposed versus 
unexposed, OR  = exp(β  ) for j ∈ { j j 

E K, H, D}. 

2 Disease-specific risk difference (average treatment effect). 
..,   Using a counterfactual framework, define pj (e) as the prevalence of 

i 
disease in the sampled population if everyone had exposure level e 
and estimate posterior density of p (1) j 

i − p (0). j 
i 

3 Multiple disease risk difference. 
..,   Define pMt (e) as the sample prevalence of having t or more 

diseases if everyone had exposure level e and estimate density of 
pMt (1) − pMt (0). 
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Confounding adjustment 

Conditional on a small set of known confounders, we use Bayesian 
model averaging (BMA) to average over models with various functional 
forms. 
 

With a small set of confounders, modeling the outcome is often 
considered a safer strategy than modeling the assignment 
mechanism. 
We used BMA to account for uncertainty in how the confounding 
adjustment should occur. 
Model weights are defined as p(M k |D) ∝ f (y |Mk )p(M k ). 
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Analysis 

Outcomes: Kidney disease, diabetes, hypertension. 
Exposures: Active, legacy (both with and without controlling for 
active exposure). 
Confounding variables: Age, sex, family history of each disease, 
and education. 

 
The posterior mean, standard deviation, and 95% credible intervals 
(CI) of the effect estimates are presented. 
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BMA summary: Posterior mean and 95% CIs for log-OR across models. 

Active exposure 

Legacy exposure, adjusting for active exposure 
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 Kidney Disease            Hypertension                   Diabetes 



Results 

Exposure health effects summary. Results include the posterior mean and sd of the 
disease-specific risk difference AT̂E j (sd ); a 95% CI; and the posterior probability that 
AT̂E j  < 0 (P). 
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ÔRj  (95% CI) AT̂E j (sd ) 95% CI P 

Kidney Disease 
Active 

 
2.33 (1.43, 3.79) 

 
.051 (.017) 

 
.019, .086 

 
.000 

Legacy 1.62 (1.00, 2.64) .028 (.015) -.000, .058 .027 
Legacy, adjusted 1.16 (0.68, 1.98) .008 (.015) -.020, .039 .291 

Hypertension 
Active 

 
1.28 (0.97, 1.69) 

 
.046 (.027) 

 
-.006, .100 

 
.041 

Legacy 1.33 (1.02, 1.74) .054 (.026) .003, .105 .019 
Legacy, adjusted 1.25 (0.92, 1.70) .043 (.029) -.015, .100 .072 

Diabetes 
Active 

 
0.96 (0.72, 1.28) 

 
-.006 (.024) 

 
-.053, .041 

 
.610 

Legacy 1.19 (0.89, 1.59) .028 (.025) -.019, .077 .124 
Legacy, adjusted 1.26 (0.92, 1.74) .039 (.027) -.015, .092 .077 



Multiple disease risk differences for t = 1+, 2+, or 3 diseases. Results include the 
posterior mean and sd AT̂E Mt (sd ), a 95% CI, and posterior probability that the 

ATE Mt   < 0 (P). 
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AT̂E Mt (sd ) 95% CI P 

Active 
t = 1+ 

 
.049 (.032) 

 
-.013, .112 

 
.066 

t = 2+ .020 (.017) -.013, .054 .128 
t = 3 .003 (.001) .001, .006 .000 

Legacy 
t = 1+ 

 
.076 (.031) 

 
.016, .134 

 
.006 

t = 2+ .039 (.018) .006, .076 .010 
t = 3 .002 (.001) .000, .005 .014 

Legacy, adjusted 
t = 1+ 

 
.068 (.035) 

 
-.003, .134 

 
.032 

t = 2+ .038 (.029) -.001, .076 .027 
t = 3 .001 (.001) -.001, .003 .153 



Conclusion 

Main results: 
Known risk factors for chronic disease are also important risk 
factors in this population. 
Evidence of associations between mining exposures and chronic 
disease after controlling for known risk factors. 

 
Limitations: 

Self-reported exposure and outcome. 
Cross-sectional convenience sample. 
Aggregated definition of exposure. 
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Conclusion 

We use a Bayesian causal inference framework to assess the 
relationship between exposure to uranium mine waste and chronic 
disease. 

Multivariate t model is computationally efficient and results in 
useful multivariate disease summaries. 
Model selection procedures often occur ‘behind the scenes’ and 
BMA facilitates transparency in methods. 
BMA approach assumes the set of confounders is known and 
computational intensity increases with number of confounders. 
Counterfactual “causal inference” framework helps establish 
conditions for a causality and informs sensitivity analyses. 
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Future directions 

Assess health effects associated with other exposure sources, 
such as contaminated drinking water or wind-blown dusts. 
 
Incorporate data from clinical assessments of disease on 
sub-sample of 267 participants. 
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