Spectroscopy and Microscopy Study of Abandoned Uranium Mine Wastes on Navajo Nation in Northeastern Arizona

Johanna M. Blake, Ph.D.

Postdoctoral Fellow University of New Mexico

November 21, 2014

NSF

NSF HRD #1305011

Abandoned Uranium Mine Wastes

- More than 1,000 abandoned mine waste sites on the Navajo Nation, many with only interim reclamation or no remedial actions.
- Rural communities, particularly Native American, live in close proximity of these sites.
- Human health risks associated with metal exposure in these sites remain poorly understood.
- Fundamental understanding about the fate and transport of metals is necessary.

Blue Gap-Tachee Site, Northeastern AZ

Navajo Nation Blue Gap-Tachee mines

- 16779.7 tons
- 4181 tons (Claim 28)
- Uranium and Vanadium mining (1950s-1980s)
- Several families still live at base of cliff next to Claim 28 wastes

Research Objective

Determine the co-occurrence of U and other metals in abandoned mine wastes using spectroscopy and microscopy.

Research Questions

- In what chemical species are U and co-occurring metals present in abandoned mine wastes in Blue Gap-Tachee Chapter of the Navajo Nation in northeastern Arizona?
- How do these metals move in the environment?

Materials: Field Samples in Blue Gap-Tachee

• Soil (solid/dirt) from surface:

Sample name	Gamma Rad (uR/hr)	Sampling Date
Undisturbed soil	13	January, 2014
Mine Waste 1	320	January 2014
Mine Waste 2	401	June 2014

- Water (sampling date: June 2014):
 - Seep in Claim 28 site
 - **Spring** (~0.3 miles away from mine waste).

Water Quality Analyses

Metals analyzed with ICP-MS*

Sample	Parameter					
	U (μg/L)	As (µg/L)	рН			
Spring	163.2	5.7	7.4			
Seep	135.4	9.6	3.8			
MCL**	30	10	6.5-8.5			

*ICP-MS = Inductively coupled plasma mass spectrometry **MCL = Maximum Contaminant Level, or drinking water standard

X-ray Diffraction (XRD)

Semi-quantitative analyses indicate that:

- 59 % quartz
- 34% potassium feldspar
- 7% kaolinite

X-ray Fluorescence (XRF) on Mine Wastes

	Elemental Content, ug g ⁻¹							
	Si	S	ΑΙ	Fe	Mg	U	V	Ca
Undisturbed Soil	241,950	1,339	52,129	26,739	3,068	BDL*	BDL*	16,441
Mine waste1	235,563	223	69,533	15,259	181	2,248	15,814	855
Mine waste2	243,703	1,834	59,730	3,511	405	6,614	4,328	3,293
						\smile		

- Abandoned mine waste solid samples were acid digested (HCI + HF + HNO₃) determine elemental content of 20-40 ug g⁻¹ As.
- ug g^{-1} = part per million

Scanning Electron Microscopy (SEM)

a) Back scattered-electron (BSE) SEM image.

b) Uranium(red) - Vanadium(green) - Iron(blue) composite BSE map. Yellow reflects combined U and V.

X-ray Photoelectron Spectroscopy (XPS)

- ~74% Fe(III) and 26% Fe(II) in undisturbed soils
- ~26% Fe(III) and 74% Fe(II) when U(VI), V(V), and As (0,I) are present.

Batch Chemical Extraction Experiments

Water Quality Data

рН	
7.4	
3.8	
	7.4 3.8

In 50 mL plastic vials loaded with 1g of sediment:

- 10mM HCO₃⁻ (~pH 8.3)
- 10 mM ascorbic acid, $C_6H_8O_6$ (~pH 3.8).

Total Reaction Time = 264 hours. Samples collected at: 0.5, 1, 1.5, 2, 6, 24, 48, 96, 264 hours.

Filtered through 0.22 μ m filter membrane, acidified (2% HNO₃).

Measurements of aqueous concentrations with ICP-MS.

Batch Experiments: U vs. V

- Release of U was ~ 10 times lower with HCO_3 than with $C_6H_8O_6$.
- Release of V was ~ 5 times lower with HCO_3 than with $C_6H_8O_6$.
- Linear relationship between U and V release.

Reference: carnotite $[K_2(UO_2)_2V_2O_8]$

Batch Experiments: As vs. Fe

- ~ 25% of As is released at pH 8.3 (no clear correlation with Fe).
- ~ 46% of As released at pH 3.8 in 1 hours.
- Some correlation is observed between As and Fe release after 1 hour of reaction of mine waste with 10 mM C₆H₈O₆ (pH 3.8).

Conclusions

- U-V phase present in abandoned mine wastes.
- U and As in mine waste can be released into water under environmentally relevant conditions.
- Release of U is 10 times higher at pH 3.8 compared with 7.4.

Acknowledgements

Co-Authors

- Sumant Avasarala, Johanna Blake, Mehdi Ali, Kateryna, Artyushkova, Adrian Brearley (UNM)
- Christopher Hirani (UNM), Fernando Echeverria, Ernesto Echeverria (FIU)
- Christopher Shuey and Paul Robinson (SRIC)
- Sadie Bill and Christopher Nez (Tachee Uranium Concerns Committee)
- Juan Lezama-Pacheco (Stanford University)
- Mike Spilde (UNM)

Questions?

E-H₂O Research Group

