(4B) Chemical Analyses in Bio-medical Investigations: the Foundation for Proving Possible Damage to Human Health

Olga Yurevna Ustinova

The Federal Scientific Centre for Preventative Medicine and the Advancement of Technologies for Managing Risks to Public Health —a division of the Federal Agency for Financing the Sciences.

The goal of this presentation:

• To open up discussion on the kind of bio-medical research programs that could uncover possible cause-and-affect "proof of damage" to public health in the town of Zakamensk.

Theoretical background for this proposed program

In accordance with accepted methodologies for establishing possible damage to public health, it is required that evidence be brought forward step by step, mainly by:

- Identifying Bio-Markers of Exposureand by
- Identifying Bio-Markers of Effect

F4. Measuring chemical substances (Markers of Exposure) in patients' (or groups of patients') bodies

A working system of bio-monitoring can help substantiate that contact with certain materials can be hazardous to human health

The latest advances in gas and liquid chromatography, as well as in atom-absorption spectralphotometry and chromato-mass spectrometry, now allow us to identify and quantify concentrations in blood, urine, breast milk, hair, bile, etc., for *more than 150 different chemical substances* and their various metabolites (*including heavy metals, aliphatic and aromatic hydrocarbons, alcohol compounds and aldehydes, as well as ketones, pesticides, dioxins, etc. etc.*)

The rationale behind markers of exposure: confirming that humans have been in contact with some external impact factor

Chemical analyses of both qualitative and quantitative exposure to chemical substances in the surrounding eco-sphere should be adequate to establish actual risks

Populations exposed to cresols

Studies should be conducted in accordance with ethical principles put forward in the Helsinki Declarations (of 1975, 1983), whereby information is gathered with the full consent of the (volunteer) subject.

The Rationale behind Markers of Exposure

The association between higher concentrations of formaldehyde in the blood and the overall dose level from chronic exposure ($R^2 = 0.64$, p≤0.05)

The association between higher concentrations of manganese in the blood and the overall dose level from chronic exposure (R² = 0,55, p≤0,05)

A requisite stage for bio-monitoring is when we establish a direct tie between certain levels of chemical concentrations in body tissues (or bio-media) with specific levels of exposure (p ≤0.05) F5. Analyses of a combination of clinical, laboratory, functional, & instrumental indicators that show human impact (Markers of Response)

Chemical risk factors and incidence of disease in human populations

Under normal conditions, where there is exposure of body tissues to even a certain amount of chemical toxicants, the response of each individual depends on a full variety of factors, such as: :

From Baikan, Maklakova, Luzhetski, Rumlyantsev in "Fundamental Research" – 2013. - № 11. – C. 74-78, and From Maklakova, Ustinova, Luzhetski, Baidan in "Reports from the Samar Scientific Center – 2013. – Volume 15 №3(6). - C. 1845-1849 And from Zaitsev: "Environmentally determined disease in gastro-duodenal systems of children" Perm .- 2009. – 320 p.

Bio-markers of effect

- Epidemiological indicators
- Clinical data
- Results of research into the functional conditions of body organs and systems
- Laboratory findings

By detecting Markers of Response that are proven to be tied to specific Markers of Exposure, we are allowed to talk of the existence of separate impacts (including—at the level of the proteome—such things as cell apoptosis, or metabolic issues, or other disruptions and predictors of somatic and reproductive pathologies).

Chemical Elements, Critical Organs & Body Systems, with Referent Levels

Substance	CAS	RfC,мg/м ³	Critical Organs and Systems	RFD, мg/кg	Critical Organs and Systems	Sfi	
Elements, the presence of which can be used to designate an area as an Environmental Disaster Zone in Russia							
Copper (Cu)	7440-50-8	2.00E-05	Respiratory Organs	0.019	Digestive tract and liver		
Zinc (Zn)	7440-66-6	0.0009	Respiratory organs, immune systems, blood	0.3	Blood, bio-chemicals (superoxide dismutase)	_	
Arsenic (As)	7440-38-2	3.00E-05	Development (i.e., fetal development.), + nervous & cardio-vascular systems, + respiratory organs, cancer	0.0003	Skin, central nervous, immune, & cardio-vascular systems, hormones (diabetes), digestive tract	15	
Lead (Pb)	7439-92-1	0.0005	Central nervous system, blood, development, reproductive and hormonal systems, kidneys	0.0035	Central nervous system, blood, bio- chemical balance, development, reproductive & hormone systems	0.042	
Molybdenum (Mo)	7439-98-7	0.012	—	0.005	Kidneys	-	
Tungsten (W)	7440-33-7	0.1	Respiratory organs	0.0025	-	-	
Cadmium (Cd)	7440-43-9	2.00E-05	Kidneys, respiratory organs, hormone system, cancer	0.0005	Kidneys, hormonal system	6.3	
Antimony (Sb)	7440-36-0	0.0004	Respiratory organs	0.0004	Biochemical balance. (glucose + cholesterol in blood), death		
			Other elements that could be included in	n this stuc	ly		
Cobalt (Co)	7440-48-4	2.00E-05	Respiratory organs	0.02	Blood	9.8	
Manganese (Mn)	7439-96-5	5.00E-05	Central and overall nervous systems, respiratory organs	0.14	Central nervous system, blood	-	
Mercury (Hg)	7439-97-6	0.0003	Central nervous system, hormones, kidneys	0.0003	Kidneys, reproductive, immune + central nervous systems, hormones	-	
Chromium (Cr)	7440-47-3	0.0001	Respiratory organs, liver, kidneys, immune systems, digestive tract	0.005	Liver, kidneys, digestive tract, mucous	42	
Nickel (Ni)	7440-02-0	5.00E-05	Respiratory organs, blood, immune and central nervous systems, cancer	0.02	Liver, cardio-vascular system, digestive tract, blood, body mass	0.84	

Epidemiological Studies

- Analysis of the dynamics, structure, and tempo in which disease grows among the residents in the area under study
- Comparative study of the dynamics and structure of specific diseases between the target area and an analogous "relatively uncontaminated" area—or with data for the entire country
- Determining classes of high-priority diseases and disorders
- Epidemiological analysis of the target group itself
- Making correlations between the identified priority substances and the various factors of risk

Clinical data regarding the onset and development of bronchial asthma (BA) in children, as well as goiter issues in the presence of environmental conditions that are subject to man-made impacts

Analytic assessments of the role played by toxic metals in the onset of patho-genetic, immuno-allergic and thyroid issues in children with bronchial asthma and goiter, all in the face of man-made impacts

Inter-systemic connections of bone metabolism markers and other clinically and laboratory-derived indicators (within children) that can be traced to man-made impacts

Basis for Determining Markers of Effect

1. The study of how the body responds to elevated internal levels of target substances, where these elevated levels are caused by exposure

List of indicative data sources for research – the data bases of WHO, US-EPA, the US Agency for Toxic Substances and Disease Registry (ATSDR), and the Russian On-line Information Retrieval System for "Hazardous Substances"

High-standard analytical equipment

A list of diagnostic indicators for detecting response: overall principles and rationale, plus the adequacy of these indicators at given levels of exposure

Analysis of proteomes: identifying basic new markers of effect

Cytogenetic analysis techniques: used for the purpose of determining markers of effect where conditions point to impacts from chemical mutagens or reproductive toxicants from the man-made environment

Establishing and assessing causal relationships between "markers of exposure – markers of response"

Relationship between «lead concentrations in the blood – levels of malondialdehyde in the blood» through inhalation exposure

Relationship between «benzol concentrations in blood – levels of delta-aminolevulinic acid in the urine» through inhalation exposure

$$p_i = \frac{1}{1 + e^{-(b_0 + b_1(x) - b_$$

Modeling for the dependence between «marker of exposure for manganese – the marker of response» through oral exposure

Marker of exposure	Marker of response	b0	b1	R ²	F	Р
	Aminobutyric acid ↑	-0.21 ± 0.02	5.24 ± 0.001	0.55	255.6	0.001
Manganese	Glutamate ↓	0.92 ± 0.05	31.03 ± 0.50	0.69	206.8	0.000
	Ca⁻ ↓	-7.66 ± 0.01	99.12 ± 0.05	0.48	178.4	0.001

A full array of response markers, in combination with the results from clinical studies, make it possible to verify that certain diseases or disorders are connected to a specific exposure

MEDICAL-BIOLOGICAL CRITERIA FOR IDENTIFYING POOLS OF CHILDREN THAT COULD UNDERGO PREVENTATIVE MEASURES FOR LOWERING THEIR CHANCES OF CHRONIC GLOMULAR AND TUBULO-INTERSTITIAL DISEASE OF THE KIDNEYS, RELATED TO INHALATION EXPOSURE TO CADMIUM AND PHENOL

№/№	CRITERIA		MINIMAL CHANGE (or URINE) SYNDROME (International disease class 10: R80-R82)	GLOMULAR AND TUBULO- INTERSTITIAL KIDNEY DISEASE (International disease class: N14.3, N15.8)
1		Age	4-7 years old	Older than 7
2	_	Genetic factors	Polymorphism of homozygous and heterozygous gene variants known as: CYPOX, RCYT 450; SULTA1	Polymorphism of homozygous and heterozygous gene variants known as: CYPOX, RCYT 450; SULTA1
3	Data	Hereditary factors	History of kidney pathologies	History of kidney pathologies
4	ıtient	Possible perinatal risk factors	+/-	+
5	\mathbf{P}_{3}	Abnormalities in the urinary system	+/-	+
6		Relapse rates	2-3 times per year	3 or more per year
7		Duration of relapses	Up to 1 month	Up to 1.5 or 2 months
	ions	Dysfunctions in urination	Disruption of the circadian rhythm of urination (where ratio of nighttime to daytime production of urine is $-1: 2.5$)	Disruption of the circadian rhythm of urination (where ratio of nighttime to daytime production of urine is $-1: 2.5$)
8	festat	Polyuria	Absent	During flare-up periods
	mani	Pressure in lower back region	Absent	During flare-up periods
	ical	Reaction to temperature	Absent	Absent
	Clini	Symptoms similar to intoxication	Absent	During flare-up periods
		Arterial hypertension	Absent	Rare

MEDICAL-BIOLOGICAL CRITERIA FOR IDENTIFYING POOLS OF CHILDREN THAT COULD UNDERGO PREVENTATIVE MEASURES FOR LOWERING THEIR CHANCES OF CHRONIC GLOMULAR + TUBULOINTERSTITIAL DISEASE OF THE KIDNEYS RELATED TO INHALATION EXPOSURE TO CADMIUM & PHENOL

<u>Nº/N</u> º	CRITERIA			MINIMAL CHANGE (or URINE) SYNDROME	GLOMULAR AND TUBULO-INTERSTITIAL KIDNEY DISEASE
9		nction of orption	Decreases in the amplitude of changes in the specific weight of urine over the course of 24 hours	Up to 0.006 conventional units (CU)	Less than 0.006 CU
	n of ns	ıal fur e-abso	Decreases in tubular reabsorption	Up to 90-95%	Less than 90%
	atio	Rer R	β2-micro-globulin in urine	Absent	Present
	un	<u>د</u>	Blood in urine (<i>hematuria</i>)	Present	Present
	f	for	Excess protein in urine (proteinuria)	0.033‰	0.033-0.066‰
	rac	tior n	Abacterial leukocytes in urine	Absent	Present
	ha Zei	atic	Glycosuria	Absent	+/-
	о –	ft	Excess excretion of uric acid	Absent	+/-
		nal F	Excess oxalates in urine	Present	Present
		Reı	Excess phosphorous in urine	Present	Present
			Excess calcium crystals in urine	Absent	+/-
					Shows up as reduction of blood flow during color-

10

From ultrasound scanning of the kidneys

Shows up as reduction of blood flow during color-Doppler imaging of renal sub-capsular zones Shows up as reduction of blood flow during color-Doppler imaging of renal sub-capsular zones; also as deviation from standard spectrograph values during pulsed-wave Doppler (for blood-flow velocity, and where resistance index is less than 0.6 CU., and pulsation index is less than 1.1 CU., along with a systolic-diastolic index with increases in the range of resistance from the core to the peripheral arteries up to 0.04 to 0.05 CU); also as increased echogenic quality of the functional part of the kidneys. MEDICAL-BIOLOGICAL CRITERIA FOR IDENTIFYING POOLS OF CHILDREN THAT COULD UNDERGO PREVENTATIVE MEASURES FOR LOWERING THEIR CHANCES OF CHRONIC GLOMULAR + TUBULOINTERSTITIAL DISEASE OF THE KIDNEYS RELATED TO INHALATION EXPOSURE TO CADMIUM & PHENOL

<u>№/№</u>		CRITERIA	MINIMAL CHANGE (or URINE) SYNDROME	GLOMULAR AND TUBULO- INTERSTITIAL KIDNEY DISEASE
11	Data	The state of oxidation and anti-oxidation processes	Increase in the total anti-oxidant activity of the blood, and increases in the amount of superoxide dismutase, glutathione peroxidase, and lipid hydroperoxide	Fluctuations in the total antioxidant activity of the blood, as well as in the content of superoxide dismutase, glutathione peroxidase, & catalase—also increases in lipid hydroperoxides & malondialdehyde
12	oratory]	The state of nonspecific resistance factors	Increased rates of phagocytic activity in blood	Decreases in phagocytic activity in blood
12	Lal	State of specific sensitization (Specific IgE to Chromium, and IgG to cadmium lead & phenol)	Absent	Present
14		State of mineral metabolism	Unchanged	Reduction in the concentration of sodium, potassium, chloride
15	Chemical Analyses	Concentration of chemical substances in the blood	Cadmium concentrations exceed normal levels by a factor of $1.4 - 2.0$; Lead concentrations exceed normal levels by a factor of $1.2 - 1.5$; Chromium concentrations exceed normal levels by a factor of $1.2 - 1.7$; Phenol concentrations exceed normal levels by a factor of $1.3 - 4.0$.	Cadmium concentrations exceed normal levels by a factor of 2.0; Lead concentrations exceed normal levels by a factor of 1.5; Chromium concentrations exceed normal levels by a factor of 1.7; Phenol concentrations exceed normal levels by a factor of 4.0.

Research Design (using the triad method)

Target organs and body systems

(as associated with this list of important toxicants)

The Main Manifestations of Impact

Clinical-Laboratory Program Study on Non-Adult Populations

- Epidemiological study of comparable sites (looking at disease patterns, death-rates, birth statistics, frequency and amplitude of congenital defects, etc.—covering the last 25-35 years; using standardized format 12 and data as prescribed by the Federal Fund for Compulsory Medical Insurance)
- Socio-Medical survey with the use of specialized survey questions
- Epidemiological study of target groups (looking for patterns of chronic somatic diseases, as well as infectious diseases that also account for vaccination patterns)
- Somato-metric studies (assessing various indicators of the physical development of children and their maturity in biological terms)
- Clinical studies (by pediatricians, ear-nose-throat (ENT) doctors, neurologists, gastroenterologists, endocrinologists) evaluating the condition state of the:
- Musculo-skeletal system
- Cardio-vascular system
- Respiratory system
- Autonomic nervous system
- Overall cognitive functions

Clinical and Laboratory Program for Surveying Non-Adult Populations

Functional tests

- EKGs
- Spirography or pneumography
- Rhinomanometry
- Cardio-interval measurements
- Ultra-sounds of the liver, bile tract, and pancreas
- Ultra-sound tests of the thyroid gland
- Ultra-sound of the kidneys to determine blood flow
- ✤ Lab tests:
- Chemical analyses of the blood
- Nasal swabs
- General analyses of the urine, and specific analyses of urine using Nechiporenko methods
- Erythrocyte indices in detail; platelets; leukocyte levels
- Bio-chemical indices of the blood anti-oxide activity; malondialdehyde (MDA) plasma; superoxide dismutase; glycerophosphate oxidase; the glucose, total protein, and cholesterol levels; both high- and low-density lipoproteins; triglycerides; alkaline phosphatase; urea content; creatinine; ionized calcium; alanine & aspartate aminotransferase; and Gamma-glutamyl
- Hormone profiles adrenocorticotropic hormones; thyroid-stimulating hormones and free T4; dopamine; serotonin; cortisol; adrenaline; norepinephrine
- β2- micro-globulin
- Energy Exchange Cyclic adenosine and guanosine monophosphates
- Genetic tests
- Immunological tests

Survey program in clinics and laboratories of adult populations

- Socio-medical survey questions based on similar specialized surveys
- Epidemiological studies of target groups (for patterns of chronic somatic diseases)
- Clinical studies (by internists, cardiologists, ENT doctors, neurologists, gastroenterologists, endocrinologists) evaluating the condition of the:
- Cardio-vascular system
- Respiratory system
- Central nervous system and autonomic nervous system
- Kidneys
- Gastro-intestinal tract
- Endocrine system

Clinical and Laboratory Program for Surveying Adult Populations

- Functional tests
- EKGs
- Spirography or pneumography
- Ultra-sounds of the liver, bile tract, and pancreas
- Ultra-sound tests of the thyroid gland
- Ultra-sound of the kidneys to determine blood flow
- Lab tests:
- Chemical analyses of the blood
- General analyses of the urine, and specific analyses of urine using Nechiporenko methods
- Erythrocyte indices in detail; platelets; leukocyte levels
- Bio-chemical indices of the blood anti-oxide activity; malondialdehyde plasma; the glucose, total protein, and cholesterol levels; both high- and low-density lipoproteins; triglycerides; alkaline phosphatase; urea content; creatinine; alanine & aspartate aminotransferase; and Gamma-glutamyl
- Hormone profiles adrenocorticotropic hormones; thyroid-stimulating hormones and free T4; dopamine; serotonin; cortisol; adrenaline; norepinephrine
- β2- micro-globulin
- Genetic tests
- Immunological tests

Survey program in clinics and laboratories for close relatives (separated by no more than 2 removes from each other)

- Epidemiological study of comparable groups (in search of disease patterns)
- Socio-medical survey questions
- Genetic studies of these groups

Thank you!