Спектроскопия и Микроскопия Отходов с Заброшенных Урановых Шахт В племени Навахо в Северовосточной Аризоне

Джоанна М. Блейк, Ph.D.

Postdoctoral Fellow University of New Mexico

November 21, 2014

Отходы Заброшенных Урановых Шахт

- Более 1,000 мест отходов заброшенных урановых шахт находятся на территории Навахо, многие из них только с временной рекультивацией и без корректирующих действий.
- Деревенские общины, особенно коренные индейцы, проживают в близи от этих мест.
- Риск для здоровья человека, который ассоциируется с металлами, присуствующими на этих местах, плохо изучен.
- Необходимо глубокое понимание судьбы и передвижения металлов.

Место Блу-Гап Тачи, Северновосточная Аризона

Шахты в общине Навахо Блу Гап-Тачи

- 16779.7 тон
- 4181 тон(Claim 28)
- Добыча урана и винадия (1950г-1980г)
- Несколько семей всё ещё живёт у подножья обрыва рядом с отходами участка 28.

Цель Исследования

Определить сочетаемость U и других металлов в заброшенных шахтных отходах с использованием спектроскопии и микроскопии

Вопросы Исследования

- В каких химических веществах есть уран и металлы в отходах урановых заброшенных шахт в районе Блу-Гап Тачи в нации Навахо в Северовосточной Аризоне?
- Как эти металлы прередвигаются в среде?

Материаллы: Полевые пробы в Блу Гар-Тачи

Почва (твёрдая/пыль) на поверхности:

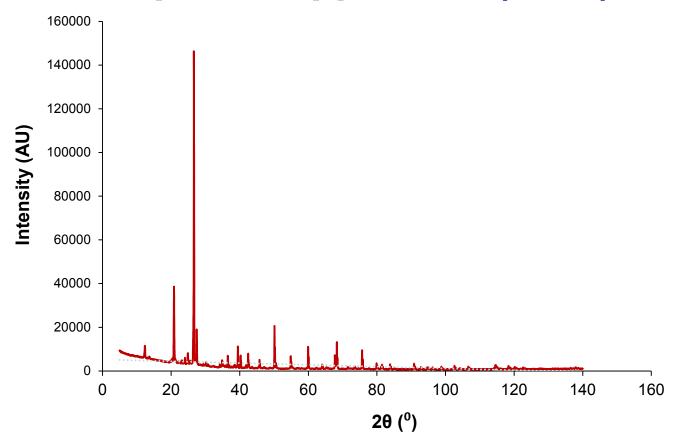
Название проб	Гама Рад (uR/hr)	Дата проб	
Не тронутая почва	13	Январь, 2014	
Отходы шахты 1	320	Январь, 2014	
Отходы шахты 2	401	Июнь 2014	


- Вода (дата проб: Июнь 2014):
 - Выплески на Участке 28
 - Истичник (~0.3 миль не далеко от шахтых отходов

Анализ воды

материаллы проанализированны с ICP-MS*

Проба	Параметр			
	U (µg/L)	As (µg/L)	рН	
Источник	163.2	5.7	7.4	
	135.4	9.6	3.8	
MCL**	30	10	6.5-8.5	

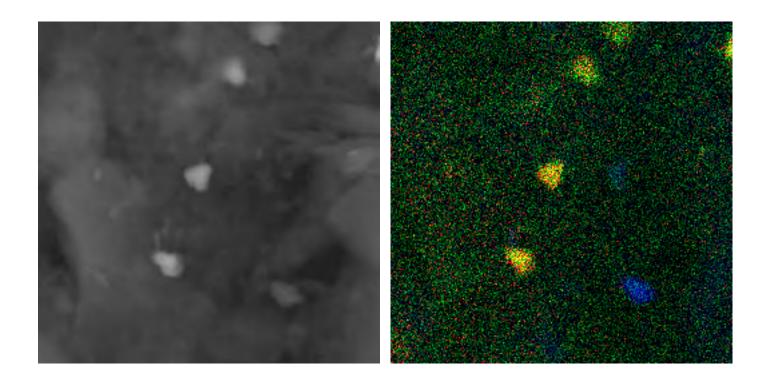


^{*}ICP-MS = (спектометрия)

^{**}MCL = стандарт Максимального Допустимого Загрязнения питьевой воды

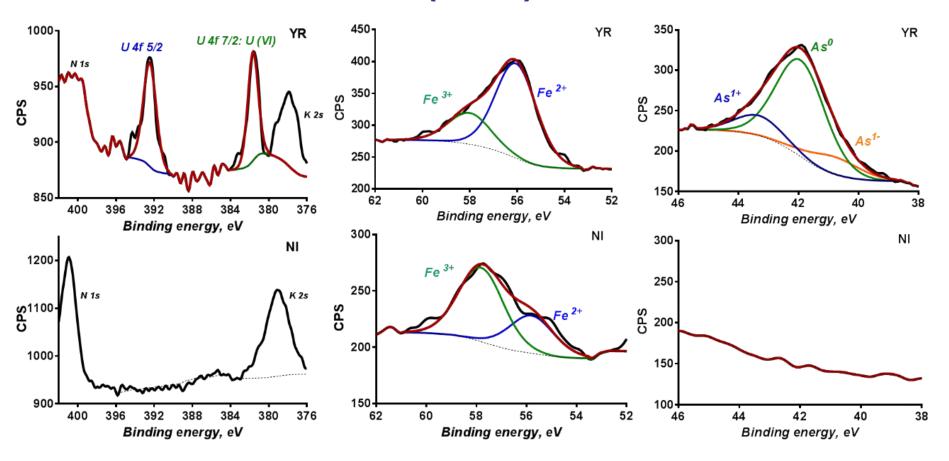
X-рэй Дифракция (XRD)

Полу-колличественный анализ показывает:


- 59 % кварций
- 34% (potassium feldspar) потассий
- 7% каолинит

X-рэй Флуросценная (XRF) на отходах шахты

	Состав элементов, ug g ⁻¹							
	Si	S	Al	Fe	Mg	U	V	Ca
Undisturbed Soil	241,950	1,339	52,129	26,739	3,068	BDL*	BDL*	16,441
Mine waste1	235,563	223	69,533	15,259	181	2,248	15,814	855
Mine waste2	243,703	1,834	59,730	3,511	405	6,614	4,328	3,293


- Почвы с отходов урановых шахт были пререработанны кислотой (HCI + HF + HNO₃) установленно минимальное содержание 20-40 ug g⁻¹ As.
- ug g^{-1} = частица на миллион

Сканирующая Электронная Микроскопия (SEM)

- a) Back scattered-electron (BSE) SEM image.
- b) Уран(красный) Венадий (Зеленый) Железо (синий) состовная карта -ВСЕ. Желтое --соединение U и V

X-рэй Фотоэлектронная Спектроскопия (XPS)

- ~74% Fe(III) и 26% Fe(II) в нетроннутых почвах
- ~26% Fe(III) и 74% Fe(II) когда присутствуют U(VI), V(V), и As (0,I).

Экскперементы по общей химической экстракции

Water Quality Data

Sample		Parameter	
	U (µg/L)	As (µg/L)	рН
Spring	163.2	5.7	7.4
Seep	135.4	9.6	3.8

В 50 mL пластмассовойпроборке наполненной 1g отложений:


- 10mM HCO₃- (~pH 8.3)
- 10 mM ascorbic кислота, C₆H₈O₆ (~pH 3.8).

Общее время реакции= 264 часа. Пробы собранны в: 0.5, 1, 1.5, 2, 6, 24, 48, 96, 264 часов.

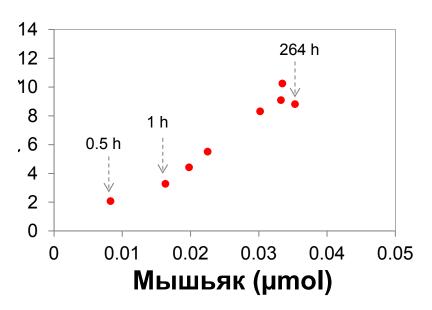
Пропущенны через 0.22 μ m фольтровую мембрану, окисленность(2% HNO₃).

Измрения водных сонцентраций с ICP-MS.

Эксперементы: U vs. V

Выброс урана \sim в 10 раз меньше с HCO $_3$ чем с С $_6$ H $_8$ O $_6$.

- Выброс венадия был ~ в 5 раз ниже с НСО₃ ниже с С₆Н₈О₆.
- Прямое соотношение между U и V выделениями.


Сноска: $[K_2(UO_2)_2V_2O_8]$

Эксперементы: Аѕ или Fе

3.0 2.5 2.0 1.5 1.0 0.5 0.005 0.01 0.015 Мышьяк (µmol)

10 mM $C_6H_8O_6$ (~pH 3.8)

- ~ 25% As выходит с pH 8.3 (нет прямой ассоциации с Fe).
- ~ 46% of As выходит с рН 3.8 за один час.
- Наблюдаются некоторые взаимосвязи между As и Fe ваходом после 1 часа реакций с отброса шахты с 10 mM C₆H₈O₆ (рН 3.8).

Выводы

- U-V Фаза присутствует в отходах заброшенных шахт.
- U и As в отходах шахт могут быть under environmentally relevant conditions. Под условиями природы
- Выплеск U –в 10 раз выше рН 3.8 по сравнению с 7.4.

Благодарность

Сотрудники

- Sumant Avasarala, Johanna Blake, Mehdi Ali, Kateryna, Artyushkova, Adrian Brearley (UNM)
- Christopher Hirani (UNM), Fernando Echeverria, Ernesto Echeverria (FIU)
- Christopher Shuey and Paul Robinson (SRIC)
- Sadie Bill and Christopher Nez (Tachee Uranium Concerns Committee)
- Juan Lezama-Pacheco (Stanford University)
- Mike Spilde (UNM)

Вопроы?

E-H₂O Research Group

